PERGÉLISOL.

 

PERGÉLISOL

Le pergélisol (en anglais : permafrost, en russe : вечная мерзлота, vetchnaïa merzlota) désigne la partie d'un cryosol gelée en permanence, au moins pendant deux ans, et de ce fait imperméable.

8290

Carte distinguant différents types de pergélisols dans l'hémisphère Nord

8291

Pour étudier le pergélisol (ici en Alaska), les chercheurs doivent utiliser des outils comme le marteau-piqueur

8292

Le pergélisol devient instable en se réchauffant ; ici fissures visibles en Suède, sur le plateau tourbeux sur pergélisol de Storflaket près d'Abisko, en lisière de la zone restée froide. Ces zones peuvent libérer du méthane, qui contribue à réchauffer l'atmosphère.

82938294

Localisation ; NSIDC

Le pergélisol existe non seulement dans les hautes latitudes (pergélisol polaire et subpolaire) mais également dans les hautes altitudes (parois sub-verticales jusqu'à 3 500 m d'altitude du pergélisol alpin). Il couvre un cinquième de la surface terrestre dont 90 % du Groenland, 80 % de l'Alaska, 50 % du Canada et de l’ex-Union soviétique. Il est généralement permanent au-delà du 60e degré de latitude et est plus sporadique pour le pergélisol alpin.

Ses formations, persistance ou disparition, et son épaisseur sont très étroitement liées aux changements climatiques. C'est pourquoi le pergélisol est étudié en tant qu'indicateur du réchauffement climatique par un réseau mondial de chercheurs s'appuyant sur des sondages, des mesures de température et un suivi satellitaire, à l'initiative du réseau mondial de surveillance terrestre du pergélisol.

Selon une étude publiée en 2018 le pergélisol arctique est devenu le plus grand réservoir de mercure au monde : environ 1,7 million de tonnes de mercure (équivalent en volume de 50 piscines olympiques) pourraient y avoir été piégées pendant et depuis la dernière glaciation. En fondant, il libère du méthane, des virus anciens, et risque de contaminer l'air et l'environnement océanique par du méthylmercure.

Gel et circulation de l'eau

Paradoxalement, la congélation du sol en modifie les propriétés physiques (gonflement, changement de porosité...), mais de l'eau libre peut se former dans la glace elle-même, de même que dans un sol gelé et une certaine conductivité hydraulique existe dans les sols gelés, plus ou moins importante selon la température, la saison et le type de substrat et de sol, leur degré de « saturation » et leur porosité. Cette conductivité peut être mesurée, de même que la perméabilité d'un sol gelé. Ce phénomène a une importance pour la circulation des nutriments qui alimentent la végétation de surface et les organismes du sol, mais aussi le cas échéant de polluants (ex : retombées de Tchernobyl ou aérosols ou gaz apportés par les pluies/neiges polluées par d'autres éléments). Dans les écosystèmes terrestres froids de type Taïga, toundra, ce cycle particulier de l'eau régule la vie du sol et affecte la vie de surface (via les fonctions des racines, mycorhizes, zones humides temporaires, etc.).

La circulation de l'eau dans un sol gelé correspond aussi à de lents (inertie d'autant plus forte que le pergélisol est épais) et subtils transferts de calories qui peuvent réveiller des colonies bactériennes, fongiques ou symbiotiques des arbres et herbacées. Un sol gelé conserve donc une certaine capacité d'infiltration, voire de filtration. En surface des phénomènes de Cryoturbation peuvent compliquer les modélisations de transferts d'eau et de calorie.

Extensions passées et actuelle

Actuellement, il représente 23,9 % de la surface mondiale, soit 22 790 000 km ou un quart des terres émergées de l'hémisphère Nord.

Le dernier maximum d'extension date d'il y a 18 000-20 000 ans lors du Dernier Maximum Glaciaire (DMG), alors que par exemple toute la moitié Nord de la France était gelée et le niveau de la mer plus bas d'environ 120 m. Le minimum d'extension date d'il y a 6 000 ans lors de la phase Atlantique dit « optimum climatique de l'Holocène ». Depuis, hormis un réchauffement de quelques siècles dans les années 800 (ap. J.-C.) lors de l’optimum climatique médiéval, avant le Petit Âge Glaciaire (PAG), les étés de l'hémisphère Nord se sont refroidis provoquant une tendance à l'extension territoriale du pergélisol.

Pour définir l'extension passée du pergélisol, il faut pouvoir recueillir des traces inscrites dans les sédiments comme le lœss. Il s'agit par exemple de fentes en coin témoignant d'un réseau de polygones de toundra, des traces de solifluxion, ou de structures microscopiques dans des sédiments argileux qui indiquent la présence de glace et l'intensité du gel dans le sol (ségrégation de glace). Mais dans les terrains sans formations superficielles meubles, il est beaucoup plus difficile de connaître l'extension passée et de différencier par exemple entre pergélisol continu et discontinu.

En limite sud, le pergélisol à une température proche de zéro en été pourrait rapidement fondre. Le Canada envisage que sa limite sud puisse ainsi remonter de 500 km vers le nord en un siècle. Un peu plus vers le nord, seule la « couche active » gagnera de l'épaisseur en été, induisant une pousse de la végétation mais aussi des mouvements de terrain déterminant des phénomènes de « forêt ivre », des modifications hydrologiques et hydrographiques et des émissions accrues de méthane, le développement des populations de moustiques, etc. Certains modèles (canadiens) estiment que les effets significatifs apparaîtront dans les années 2025 à 2035.

Le pergélisol occupait une surface bien plus vaste lors des périodes glaciaires du Quaternaire mais il contribue néanmoins à une forte inertie thermique des milieux des pays nordiques. On distingue des très hautes latitudes ou altitudes vers des latitudes plus septentrionales, un pergélisol continu, d'un pergélisol discontinu voire sporadique. La zone du pergélisol discontinu est tributaire de facteurs stationnaires (orientation du versant, protection thermique par un lac, une forêt, etc.).

Dans sa partie septentrionale, la couche de sol la plus superficielle dégèle en été. Sur ce mollisol ou couche active, lors de la courte saison végétative, quelques plantes et organismes se développent, alors que ni les racines ni les animaux ne peuvent pénétrer le pergélisol vrai.

Caractéristiques

Là où il est présent depuis plusieurs cycles glaciaires, le pergélisol peut être épais de plusieurs centaines de mètres :

  • de 440 mètres à Barrow (Alaska) à environ 750 m dans l'arctique canadien
  • environ 600 mètres en Sibérie orientale avec des maxima pouvant aller jusqu'à plus de 1 000 mètres dans certaines régions (monts de Verkhoïansk)

Les sols gelés de l’Arctique contiennent environ 1 668 milliards de tonnes de CO2.

La dégradation en profondeur de ce pergélisol se fait par advection de chaleur : de l'eau à l'état liquide circule dans les fractures en profondeur et dégèle la glace.

La zone dite « active »

8295

Construction sur Pergélisol dans le centre de Yakoutsk

C'est la zone en surface qui dégèle en été par conduction de chaleur depuis la surface (approfondissement de la couche active). Elle varie selon l'altitude et la latitude, mais aussi dans l'espace et dans le temps au rythme des glaciations et réchauffements, parfois brutalement dès que l'enneigement recule et laisse apparaître un sol foncé qui capte la chaleur que l'albédo des glaces et neige renvoyaient vers le ciel. Cette zone est aujourd’hui généralement profonde de quelques centimètres à quelques décimètres. À sa limite sud, où elle est moins épaisse, elle pourrait s'étendre rapidement vers le nord. Dans les zones nordiques les constructions reposent aujourd'hui sur des pieux enfoncés à plusieurs mètres de profondeur, et il est recommandé de conserver un vide sous les maisons.

Dans les Alpes, le pergélisol se retrouve au-dessus de 2 500 mètres sur les ubacs. Un dégel de ces zones pourrait provoquer des éboulements importants.

En Suisse, l'Office fédéral de l'environnement (OFEV) a publié une carte et une liste actualisée des zones habitées particulièrement menacées. Les dangers d'éboulements existent surtout pour les localités qui se situent au fond des vallées. Parmi elles figurent la commune de Zermatt, entourée par trois pans de montagne qui reposent sur du pergélisol. La liste mentionne également Saint-Moritz, Saas Balen et Kandersteg. La probabilité qu'un gros événement se produise augmente avec la fonte croissante de la glace. Le risque ne porte pas seulement sur le fait que d'importantes masses de roches se détachent, mais que celles-ci provoquent des réactions en chaîne qui pourraient engendrer des dégâts dans les zones habitées, comme ce fut le cas dans le Caucase. Dans cette région, en 2002, un effondrement rocheux de quelques millions de mètres cubes a entraîné tout un glacier avec lui, provoquant un gigantesque glissement de terrain qui a totalement détruit une vallée de plus de trente-trois kilomètres.

La fonte de la glace du pergélisol est susceptible de créer des thermokarsts, des phénomènes de solifluxion et des mouvements importants des sols, ce qui inquiète car de nombreuses constructions, ainsi que des oléoducs sont posés sans fondations sur ces sols. Des villes entières sont construites sur le pergélisol comme Iakoutsk posée sur trois cents mètres de sol et roches congelés, où la température moyenne annuelle a augmenté de 2 °C en trente ans sans conséquence observable en profondeur à ce jour, selon l'Institut du pergélisol fondé dans cette ville.

Même si le sol ne fond pas, un réchauffement différentiel entre les couches superficielles et profondes de sol ou entre des éléments plus ou moins riches en eau des couches supérieures de sol pourrait provoquer des dégâts importants par dilatation différentielle.

Boucle de rétroaction

Le dégel du pergélisol permet aux bactéries de se développer, et avec la fonte du pergélisol les déchets organiques deviennent accessibles aux microbes qui produisent du CO2 et du méthane. Ainsi, il pourrait émettre à l'avenir environ 1,5 milliard de tonnes de gaz à effet de serre chaque année.

C'est un cercle vicieux puisque les gaz à effet de serre accélèrent le réchauffement de la planète et le réchauffement de la planète augmente la fonte du pergélisol. C'est ce qu'on appelle une boucle de rétroaction.

Une équipe de chercheurs du CNRS et de l'université Laval de Québec étudie cette boucle de rétroaction, dans le programme APT (acceleration of permafrost thaw (« accélération de la fonte du pergélisol »)), afin d'en évaluer l'ampleur : la quantité de carbone contenue dans le pergélisol est estimée à deux fois celle présente dans l'atmosphère ; estimer la part de ce carbone qui sera relargué dans l'atmosphère par les bactéries est donc essentiel.

Effets écopaysagers de la fonte du pergélisol

8296

En fondant, le pergélisol modifie le trait de côte (ici d'Alaska), libère du méthane et du mercure accumulé dans la matière organique ce qui favorise la méthylation du mercure en le rendant plus bioassimilable et toxique.

 

 

 

 

 

 

Date de dernière mise à jour : 20/04/2025

Aucune note. Soyez le premier à attribuer une note !

Ajouter un commentaire

Anti-spam